Robust Estimators for Random Coefficient Regression Models
نویسنده
چکیده
Random coefficient regression models have received considerable attention, especially from econometricians. Previous work has assumed that the coefficients have normal distributions. The variances of the coefficients have, in previous papers, been estimated by maximum likelihood or by least squares methodology applied to the squared residuals from a preliminary (unweighted) fit. Maximum likelihood estimation poses difficult numerical problems. Least squares estimation of the variances is inefficient because the squared residuals have a distribution with a heavy right tail. In this paper we propose several robust estimators for random coefficients models. We compare them by Monte Carlo with estimators based on least squares applied to the squared residuals. The robust estimators are best overall, even at the normal model. Among the different robust estimators, none stands out as best. All are rather satisfactory and can be tentatively recommended for routine use.
منابع مشابه
A simple estimator for the distribution of random coefficients
We propose a simple mixtures estimator for recovering the joint distribution of parameter heterogeneity in economic models, such as the random coefficients logit. The estimator is based on linear regression subject to linear inequality constraints, and is robust, easy to program, and computationally attractive compared to alternative estimators for random coefficient models. For complex structu...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust Estimation of a Correlation Coefficient for Ε-contaminated Bivariate Normal Distributions
Robust estimators of a correlation coefficient based on: (i) direct robust counterparts of the sample correlation coefficient, (ii) nonparametric measures of correlation, (iii) robust regression, (iv) robust estimation of the variances of principal variables, (v) stable parameter estimation, and (vi) the preliminary rejection of outliers from the data with the subsequent application of the samp...
متن کاملShrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کامل